
VISILIENCE: An Interactive Visualization
Framework for Resilience Analysis using

Control-Flow Graph
Hailong Jiang*

Kent State University
hjiang13@kent.edu

Shaolun Ruan*
Singapore management university

haywardryan@foxmail.com

Bo Fang
Pacific Northwest National Laboratory

bo.fang@pnnl.gov

Yong Wang
Singapore management university

yongwang@smu.edu.sg

Qiang Guan
Kent State University

qguan@kent.edu

Abstract—Soft errors have become one of the main concerns
for the resilience of HPC applications, as these errors can cause
HPC applications to generate serious outcomes such as silent
data corruption (SDC). Many approaches have been proposed
to analyze the resilience of HPC applications. However, existing
studies rarely address the challenges of analysis result percep-
tion. Specifically, resilience analysis techniques often produce a
massive volume of unstructured data, making it difficult for
programmers to perform resilience analysis due to non-intuitive
raw data. Furthermore, different analysis models produce diverse
results with multiple levels of detail, which can create obstacles
to compare and explore the resilience of the HPC program
execution. To this end, we present VISILIENCE, an interactive
VISual resILIENCE analysis framework to allow programmers
to facilitate the resilience analysis of HPC applications. In partic-
ular, VISILIENCE leverages an effective visualization approach,
Control Flow Graph (CFG) to present a function execution.
Furthermore, three widely used models for resilience analysis
(i.e., Y-Branch, IPAS, and TRIDENT) are seamlessly integrated
into the framework for resilience analysis and result comparison.
Multiple case studies have been conducted to demonstrate the
effectiveness of our proposed framework VISILIENCE.

Index Terms—Error Resilience, Visualization, Visual Analytics,
Control Flow Graph

I. INTRODUCTION

Transient hardware faults, typically caused by particle
strikes [1] are significant concerns in High Performance Com-
puting (HPC) systems. As HPC systems continue to scale
up, the chance of occurrence of soft errors also increases
[2]. Although soft errors can be detected and corrected by
hardware and system-level mechanisms, such as ECC or
checkpointing/restart schemes, some can escape these mech-
anisms and propagate to applications [3]. These errors may
cause applications to fail and serious outcomes such as silent
data corruptions (SDCs) and crashes.

SDCs need more attention due to their no-symptom effect
[4]–[10]. Traditional fault tolerance methods protect programs

*These authors contributed equally to this work and should be considered
co-first authors.

Thanks to the support partially from NSF #2217104 #2212465

against data corruption through Dual Modular Redundancy
(that is, DMR, for error detection) and Triple Modular Redun-
dancy (that is, TRM, for error recovery) [11]. However, a full-
state DMR or TMR might not be feasible for HPC applications
as such applications are significantly time-consuming and
resource-intensive. Therefore, a large body of studies leverage
applications’ inherent fault-masking abilities to devise cost-
effective SDC detection and recovery approaches [4], [7], [12],
[13]. For example, Wang et al. [14] use random fault injections
to determine whether a branch is outcome-tolerant, called Y-
Branch. They randomly choose a branch and force it down
the alternate path when the chosen branch is encountered at
run-time. They test all branch instances and output a binary
result of each branch as Y-Branch or non-Y-Branch. I. Laguna
et al. proposed a machine learning model, IPAS [15], to
find the instructions that must be protected to avoid SOC
(the term SOC is explained in Section III). IPAS classifies
an instruction as a SOC-generating instruction or non-SOC-
generating instruction based on its extracted features. G. Li
et al. [8] proposed a tool named TRIDENT to predict both
the overall SDC probability of a given program and the SDC
probabilities of individual instructions without fault injection.
Trident outputs the SDC probability values of instructions.

However, directly adopting the results of the approaches for
efficiently conducting application-specific error detection and
correction remains challenging. Some fundamental gaps exist:

■ Instruction level information is hard to follow. For exam-
ple, IPAS identifies the SOC-generating instructions but
does not explicitly help users scope the instructions;

■ The resulting resilience characteristics of a series of
program states can be scattered, lacking a holistic view
for the users. For example, TRIDENT models the SDC
probability of state transitions where the state depen-
dency is not presented in the final output.

■ Large-scale HPC applications produce a massive volume
of dynamic program states, which could lead to enor-



mous efforts to classify and summarize the unstructured
resilience-related data generated by those approaches.

■ It needs sizable extra effort to post-analyze the results
from different resilience frameworks if one wants to
lift the limitation of a single framework and makes a
comprehensive assessment of an application’s resilience
using multiple frameworks simultaneously.

Therefore, a unified approach allowing an intuitive explo-
ration for efficiently analyzing the results of multiple resilience
approaches would be helpful to the dependability community.
Visualization has been proven more effective for large-scale
quantitative analysis than raw data exploration [16], [17].
A user-friendly interface that tailors widely-used resilience
analysis models can provide comprehensive solutions for
the users to understand the findings of those techniques
and cross-reference the program states/instructions/code pieces
suggested by them.

To this end, we propose VISILIENCE, an interactive VISual
reSILIENCE analysis framework in this paper. VISILIENCE
takes Control Flow Graph (CFG) as a visualization lay-
out and visualizes the resilience properties on it. A CFG
comprises functions, basic blocks, instructions, and program
execution paths and shows the dependency between all these
elements. Also, the data size of CFG is hugely smaller than
dynamic program states for HPC programs. These properties
of CFG narrow the “fundamental gaps” introduced above.
Three widely used models for resilience analysis (i.e., Y-
Branch, IPAS, and TRIDENT) are seamlessly embedded into
our framework for resilience analysis and result comparison.
These resilience analyses are on different levels, and the
results are in different formats. VISILIENCE encodes the
analysis results into a unified data format as an input of
the Visualization Engine. The unified data format of our
visualization platform allows programmers to use multiple
resilience analysis models simultaneously. The Visualization
Engine outputs an interactive visual interface showing the
resilience analysis results.

To the best of our knowledge, VISILIENCE is the first
visualization tool for the resilience analysis that efficiently
supports large-scale HPC applications via control flow graph.

In summary, the contributions of this paper are as follows:
■ We propose a novel interactive visualization framework,

VISILIENCE. It supports three resilience analysis mod-
els and enables the interpretable resilience analysis re-
sults between different analysis models through several
human-computer interactions that help users understand
the resilience data.

■ The VISILIENCE Visualization Engine is based on the
Control Flow Graph (CFG), which can accommodate
information from the instruction level to the function
level. VISILIENCE can be combined with other static
analysis tools which use CFGs. The resilience analysis
outcomes based on CFG can directly guide the compiler
optimizations.

■ We propose a unified JSON data format to Visualize
Engine in VISILIENCE. The unified data interface can

bridge the gap of understanding the differences between
resilience analysis models.

The rest of this paper is organized as follows: Section II in-
troduces the background information, including Control Flow
Graph and definitions related to resilience; Section III presents
VSILIENCE’s system design and the implementation of each
component in the analysis framework. In Section IV we
introduce the design of the visualization system. We showcase
the results of visualizations for the benchmark applications in
Section V, and the related studies are discussed in Section ??.
We present our conclusion in Section VII.

II. BACKGROUND

In this section, we describe the background of the Con-
trol Flow Graph, the fault model, and the terms related to
resilience.

A. Fault Model

We consider soft errors, i.e., transient faults that escape from
hardware protection and propagate to the application level.
These errors manifest themselves as bit-flips in registers and
memory locations. The application consumed the corrupted
registers and memory cells. We focus on single-bit errors, not
multi-bit errors. The reason behind this is that (1) single-bit
errors are the most common soft errors—multi-bit errors rarely
happen in large-scale systems [18]; (2) in many cases, multi-
bit errors have a similar impact on the application as single-bit
errors [19].

B. Terms and Definitions

If the program output matches that of the error-free exe-
cution even though a fault occurred during its execution, it
is called Benign; in contrast, if the program output does not
match, it is called Silent Data Corruption (SDC). If the OS
terminates the program due to the error, it is called Crash.

III. SYSTEM DESIGN

This section describes the design of VISILIENCE. We first
introduce the overall architecture (Figure 1), then explain each
component’s design details.

Figure 1 shows the main components and the workflow
of VISILIENCE. VISILIENCE proceeds as follows: (A), first,
it takes an application as input and conducts a resilience
analysis on the application based on three resilience analysis
models: Y-Branch [14], IPAS [15] and TRIDENT [8]. These
resilience analyses are on different levels, and the results are
in different formats; (B), Then VISILIENCE encodes the result
into a unified format (in Section III-C) as an input of the
Visualization Engine; (C) Visualization Engine take these data
as input and visualize these data on control flow graph of this
program.

In the rest of this section, we present the details of each
component.



HPC Programs

Trident

IPAS

Y-Branch

Resilience Analysis

execute

Model Execution Data Generation Visualization Construction

Function ID

Label

Nodes Edges

Node ID
Name

Label Shape

Edge ID
Source
Target Color Edge ID

Name

Weight

Function1

Function2

Function3

Function4

Function5

Function6 Function Graph

Function View

Fig. 1. An overall overview of VISILIENCE. (A) three resilience analysis models in the Resilience Analysis part (Section III-A); (B) Data Generation part
generates CFG data (Section III-B), and encodes the resilience analysis results into a unified format (Section III-C); (C) Visualization Engine takes the
formatted data and CFG data as input and outputs an interactive visual interface of the resilience analysis results (Section IV).

A. Resilience Analysis

For programmers, understanding the resilience of a program
on multiple levels is essential: (1) it can instruct economical
protection of vulnerable sections of the program; (2) it also
can help the programmers build a resilient program.

We implemented three models proposed by previous re-
searchers to analyze resilience at the basic block and instruc-
tion levels. Here, we introduce the implementation of these
models in our work:

■ Y-Branch: Y-branches [14] is built on a characterization
of outcome-tolerant branch instances. Using statistical
sampling, the Y-Branch can search out the dynamic and
mispredicted branches that do not affect correct program
behavior when forced down the incorrect path. The Y-
Branch model uses values “0” and “1” to represent Y-
Branch and non-Y-Branch, respectively.

■ IPAS: Due to natural error masking, only a subset of
SDC errors actually affects the output of scientific codes–
these errors Silent Output Corruption errors are called
SOC errors [15]. IPAS has trained a classifier model to
take the instruction features as input and outputs the class
of this instruction: Class 0: non-SOC-generating instruc-
tion or Class 1: SOC-generating instruction. Applying the
IPAS model to all the instructions in a basic block, we
can obtain the number of SOC-generating instructions
in this basic block and calculate the SOC-generating
instruction rate.

■ TRIDENT: TRIDENT [8] estimates the SDC probability
of individual instruction and the entire program without
performing any FIs. TRIDENT takes three inputs:(1) The
program code compiled in the LLVM IR, (2)a program
input to execute the program and obtain its execution
profile, and (3) the target instruction(s). TRIDENT auto-
matically computes (1) the SDC probability of individual
instructions and (2) the overall SDC probability of the
program based on these inputs. TRIDENT has three sub-
models to abstract Static-instruction level, Control Flow
level, and Memory level. We use the Control Flow level

submodel to calculate SDC probabilities of dynamic
instructions. Since there is no branch inside the basic
blocks, the entry instruction domains all instructions
inside the basic blocks, which means that all the instruc-
tions in the same basic block should have the same SDC
probability except the exit instructions.

B. Benefits of using CFG representation
CFG is widely used in compiler optimizations and static

analysis tools. VISILIENCE uses CFG as a visualization layout
due to the following reasons:

■ A CFG not only comprises functions, basic blocks,
instructions, and execution paths of the program but
also shows the dependency between all these elements.
Accommodation of multiple-level information and de-
pendency can help programmers understand resilience
better.

■ The data size of an HPC program CFG is hugely
smaller than dynamic program states, which reduces the
resilience analysis time and overhead.

■ CFG is a graphical representation of a program. It
naturally visualizes how execution traverses a program
intuitively.

■ Weights are added to the edges in the CFG so that one
more data dimension could be represented. The dynamic
iteration number of each edge in CFG is set as the default
weight and labeled on it as shown in Figure 3 “CFG”
diagram.

For example, The CFG JSON file of “CoMD” [20] in
VISILIENCE is shown in Figure 2 and its diagram is in Figure
3. There are three kinds of elements “objects”, “nodes” and
“edges” representing “functions”, “basic blocks” and “con-
trol flows” of CoMD, respectively. Each element in this file
has a unique “name” and “ gvid”. Each “objects” contains
the “nodes” inside it and the “edges” between them. The
“name” of the “nodes” is the address of the entry instruction.
The “edges” go from “tail” to “head”.

The CFG JSON file is generated using DCFG [21]. DCFG
is built on “ParseAPI” and “InstructionAPI” of Dyninst [22] to



CFG JSON Data

Resilience Analysis JSON Data

Fig. 2. CFG json data and resilience analysis json data

produce the static control flow graph of a binary file. Dyninst
is a binary instrumentation tool, performing static and dynamic
analysis on binaries and processes.

C. Visual Encoding

The Three analysis models above analyze resilience on
different levels and output three data formats. The Data Trans-
former part encodes the resilience analysis result to a unified
format shown in Figure 2 and passes it to the Visualization
Engine.

The first line in resilience analysis json data in Figure 3
shows the unified format of data. The “node number” and
“edges” are the same as those in Figure 2 (a). The “label”
and “value” of each elements are the Data Interface between
Data Transformer and Visualization Engine.

Y-Branch asserts a conditional basic block as a Y-Branch or
not; the Data Transformer would set “value” of the “node”
“1” when it is not Y-Branch and “0” in contrast. Visualization
Engine will mark the node of basic block “red” when “value”
is “1” and “green” when “value” is “0” as demonstrated in
Figure 3. This paper takes the regular basic blocks with no
branch as Y-Branch blocks.

IPAS classifies the instruction as non-SOC-generating in-
struction or SOC-generating instruction. Data Transformer

calculates the SOC-generating-instruction rate of each basic
block using:

RSOC =
NSOC

NInst.
(1)

where NSOC is the number of SOC-generating instructions
in the basic block, NInst. is the number of instructions in
the basic block, and RSOC is the SOC-generating-instruction
rate of the basic block. Then, the Data Transformer sets the
RSOC as the “value” of each basic block and passes it to the
Visualization Engine. VisualDiagram of centralization Engine
will adjust the darkness of the node according to the “value”
as shown in Figure 3.

TRIDENT calculates the probability of propagation of SDC
from one basic block to another. VISILIENCE encodes the
“label” of the “edge” be the probability of SDC from the
output of TRIDENT. Here, in TRIDENT mode, the default
weights of edges would be covered by the probability of SDC.
Visualization Engine adheres the value to each edge and colors
the edge black if the “value” of it is “0”; otherwise, it is red
as shown in Figure 3. More details are introduced in the Use
Case (Section V).

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

401300

401310 40131a

CFG Y-Branch

IPAS Trident

0.60.4

0 10.5

RSOC Value
Threshold: 0.5

Not Y-Branch

Y-Branch

Above Threshold

Below Threshold

Basic Block

Dynamic Execution 
Count

SDC Probability

1 100

Fig. 3. Diagram of control flow graphs of three models.

D. Visualization Engine

The Visualization Engine of VISILIENCE takes the CFG
JSON file and the unified resilience analysis result as inputs
and shows us an interactive visual interface. It first draws a
layout of CFG and then maps the analysis result onto it. The
Visualization Engine is described in more detail in the next
section.

IV. VISUALIZATION ENGINE DESIGN

We proposed VISILIENCE, an interactive visualization
framework for programmers to facilitate the resilience analysis
workflow. The framework applies intuitive visual representa-
tion and effective user interactions to portray the error patterns
of HPC applications. More specifically, we used Control Flow



Graph to visualize the interaction between basic blocks, tak-
ing model characterization (e.g., SDC probability and RSOC

value) into account. Furthermore, we leveraged a bar sequence
as a system portal, present an overview of all functions in a
certain model. The design principles, system workflow, and
interface will be discussed in this section.

A. Design Challenges

To guide the design of our visualization engine, we sum-
marize three primary design challenges:
DC1. Imitate the basic block interface to generate the
layout. Although the sequence of basic blocks is available, a
layout that resembles the basic block interface is still uncertain.
That is because the existing graph layout algorithms for
representing a divergent execution flow, such as tree-map and
hierarchy, do not support the layout that includes ambiguous
nodes and cycles within a stratified relationship; otherwise,
multiple root nodes will be generated to break the hierarchy
structure.
DC2. Enhance the scalability to support real-world data.
We implement the layout generation process module in the
front-end component, which handles both the generation and
rendering tasks. In contrast, many entities will be parsed
prior to the graph rendering. It is a tough job to parse and
generate the position of each node simultaneously. Specifically,
powerful hardware is needed when the velocity force vx and
vy of each node are hard to iterate if the number of entities
gets 5000 or more.
DC3. Visualize the connection status between different
clusters. After our qualitative evaluation, the anomalous edges
exist both within the cluster and the connection between
adjacent clusters. The authoring system must handle the diff
array between two different clusters prior to the generation of
the graph layout and the re-rendering stage.

B. System Workflow

Our Visualization System has two modules, namely the
function selecting module and the graph module, to support
the collaborative design of basic block-like visualization. The
processing pipeline is shown as Fig. 4. the visualization system

Data Source
Parse Layout

Parse Value

Initial Graph Updated Graph

render
Data Mapping

Layout Generation

Visualization Workflow

Fig. 4. The workflow of our visualization system incorporates two stages.
The layout file will be handled and generated the information of nodes and
edges including vx and vy simulation. Prior to the re-rendering of anomalous
mapping.

has two separated stages for resilience graph generation,
namely the layout simulation and the anomaly mapping.

Layout generation: by parsing the data source into the graph
layout format, a force-directed simulation has been generated
to control the zooming of each code block, which meets the
requirement of DC1. Unlike stratified layouts, this approach
produces a separated force simulation for each node’s position
instead of a global positioning function, which enables flexible
interactions for users to explore the graph entities themselves.
The weak point is the disorder of the code block’s execu-
tion flow due to the missing of the root node. This is an
interesting point worth exploring and we leave it to future
work. To overcome DC2, we first handle the visual scalability
of the node elements by separating the global code blocks
into clusters based on the cluster label, which facilitates the
simulation forceManyBody() between nodes to be more legible
to positioned within the view.

Data mapping: after parsing the diff output, both the cluster
overview and graph module will be re-rendered to hold the
weight from the trace data.

C. Interface

We implement a user-friendly interface to visualize the re-
silience analysis results. (see Figure 5). The interface consists
of five parts:

■ Function View (A) consists of a sequence of bars, where
each bar depicts a certain function in a model. The
number of edges in a certain function is encoded by
each bar height, while the bar color represents the node
number. Specifically, the more nodes in a function, the
redder the bar. Function View is a portal for VISILIENCE,
and the user can drill-down to the detailed graph by
selecting the preferred function.

■ Graph View (B) shows the Control Flow Graph. The
vertices of the graph are basic blocks and the head (in
yellow) and tail (in red) nodes are the entry and exit
of the function respectively. The edges represent the
connections between two basic blocks in the CFG. There
are three graph view options on the right corner: “Y-
Branch”, “IPAS”, and “TRIDENT”. Click on any one and
the Graph View will display the analysis result of that
one. The detailed information of each node would pop
up when the mouse hovered on it, including its id, the
entry/exit instruction of the basic block, and the order of
this basic block in this function.

■ Weight Threshold (C) is used to filter the edges. The
value would be changed if we slide the bar in the Weight
Threshold, and the edges with smaller weights below
the threshold value would be assigned into gray. On the
contrary, the edge will be rendered in red.

■ Function List (D) lists all the function name in the pro-
gram with specific name in the same order in Function
View. The user can browse all functions via Function List
before proceeding to the drill-down view. The parameters
include the “name” of the function, its cluster sequence,
color and edge numbers.



■ User Interaction allows programmers to interact with
the visualization engine and get a deep insight for the
resilience analysis. First, the user can adjust the threshold
value to launch the graph edge re-rendering. Second, with
the hover of a graph node, the user can gain detailed
information of a basic block, e.g., the label and shape
attributes. Furthermore, flexible switch of the CFG is
supported via interaction with the sequence bars.

C

B

A

D

Interface

Fig. 5. The interface of Visualization Engine. (A) Function view is a series
of dots at top represent the functions; (B) The graph is shown in the Graph
view and the nodes are basic blocks; (C) Weight threshold is used to set the
weight threshold; (D) The functions with specific names are listed in Function
List.

V. CASE STUDY

In this section, we demonstrate the usage of Visilience on
CoMD [20] benchmark.

At the top, there is a sequence of bars that represent the
functions of CoMD. These functions are placed in the order of
where they are defined. The heights of the bars are positively
related to the number of edges.The more nodes in a function,
the darker the bar will be. Click on a bar, and its CFG will be
displayed in Function Graph View. The vertices of the graph
are basic blocks. The hexadecimal number next to the node is
the basic block’s entry instruction address. The edges represent
the connection between two basic blocks in the CFG, and the
program executes in the arrow’s direction.

Figure 6 (A) shows the partial control flow graph of function
ljForce omp fn.1. The weights on the edges are the SDC
propagation possibilities between basic blocks. For example,
the weights on edge of “0x40231b”− > “0x40232a” is 0.66.
That means The error effect in basic block “0x40231b has
a 66% possibility to affect the basic block “0x40232a”. The
weight threshold bar on the very left top can be slid from 0
to 1. The edges with weights smaller than the threshold are
assigned into gray; in contrast, the edges with weights larger
than the threshold are highlighted in red. As shown in Figure
6 (A), the weight threshold is set to 0.4. This function can
help the user visually prioritize the choices to protect code

regions with the highest SDC probability when the protection
resources are limited.

Figure 6 (B) shows the partial control flow graph of function
ljForce omp fn.1. The darkness of the nodes represents the
SOC-generating-instruction rate calculated by Function 1: the
darker the colour, the higher the rate. One can easily tell
the nodes with higher SOC-generating-instruction rate so that
one can determine the minimal set of instructions that require
duplication to avoid SOC saving runtime overhead. For exam-
ple, the basic block “0x40231b” is darker than “0x40232a”,
which means the basic block “0x40231b” has a higher SOC-
generating instruction rate.

Figure 6 (C) shows the partial control flow graph of function
ljForce omp fn.1. Basic blocks in Y-Branch node are green
or red, representing Y-branch and non-Y-Branch. If an error
occurs at a red node, the final result will be affected by this
error, such as “0x40231b”; in contrast, if this error occurs in
a green node, it would be masked, such as “0x4023a1”.

VI. DISCUSSION

A. Scalability

In the visualization process, the capacity of the virtualiza-
tion engine in our tool has a limit that each function can
accommodate up to 1000 basic blocks. For our experiments
and benchmarks, the number of basic blocks is far less than
1,000. If we encounter any function with more basic blocks
than the upper limit, we need to optimize the visualization
engine. Specifically, the layout to present basic nodes is
generated based on force-directed approach, leading to a bad
performance of the visualization rendering if the number of
basic block entities exceeds thousands.

B. Applicability

Besides, Visilience can be combined with other performance
profile tools, such as HPCtoolkits [23]. HPCtoolkits employs
binary-level measurement and analysis and associated with
static and dynamic context. Similarly, HPCtoolkits can also
profile out and extract the temporal pattern in performance
and it profiles performance at the function level granularity.
HPCtraceViewer provides layered profile reports and human-
computer interaction to enable developers to explore and figure
out the limitation of the application in performance.

VII. CONCLUSION

To protect the applications from soft errors is an essential
while challenging task. A profound understanding of resilience
on different levels is the building block to develop resilient
programs and conduct economical protection. In this paper,
we present VISILIENCE, a visual resilience analysis framework
to show the resilience analysis results to programmers in an
intuitive way. VISILIENCE takes the Control Flow Graph as a
layout and maps the resilience analysis data on it. VISILIENCE
conducts three resilience analysis models and encodes these
data into a unified data format, and visualizes the data into an
interactive interface. The Visualization Engine provides several
human-computer interactions, which help the users understand



Detailed Graph

Trident ModelA IPAS ModelB Y-Branch ModelC

Fig. 6. Detailed graph of (A) TRIDENT, (B) IPAS, and (C) Y-Branch.

the data better. Multiple case studies have been conducted to
demonstrate the effectiveness of VISILIENCE.

ACKNOWLEDGMENT

Thanks to the support partially from NSF #2217104
#2212465.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semiconduc-
tor technologies,” IEEE Transactions on Device and materials reliability,
vol. 5, no. 3, pp. 305–316, 2005.

[2] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[3] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pp. 1–10, 2013.

[4] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability,” in HPCA 2009., 2009, pp. 117–128.

[5] B. Wibowo, A. Agrawal, and J. Tuck, “Characterizing the impact of
soft errors across microarchitectural structures and implications for
predictability,” in 2017 IEEE International Symposium on Workload
Characterization (IISWC), Oct 2017, pp. 250–260.

[6] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “Measur-
ing architectural vulnerability factors,” in IEEE MICRO, vol. 23, no. 6.

[7] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“epvf: An enhanced program vulnerability factor methodology for cross-
layer resilience analysis,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), acceptance
rate = 21%, June 2016, pp. 168–179.

[8] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Model-
ing soft-error propagation in programs,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2018, pp. 27–38.

[9] Q. Guan, N. BeBardeleben, P. Wu, S. Eidenbenz, S. Blanchard, L. Mon-
roe, E. Baseman, and L. Tan, “Design, use and evaluation of p-fsefi: A
parallel soft error fault injection framework for emulating soft errors
in parallel applications,” in Proceedings of the 9th EAI International
Conference on Simulation Tools and Techniques, 2016.

[10] R. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and P. Bose,
“Understanding the propagation of transient errors in HPC applications.”
SC, pp. 72–12, 2015.

[11] L. Chen and A. Avizienis, “N-version programminc: A fault-tolerance
approach to rellablllty of software operatlon,” in Twenty-Fifth Interna-
tional Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from
Twenty-Five Years’., 1995, pp. 113–.

[12] Z. Li, H. Menon, K. Mohror, P.-T. Bremer, Y. Livant, and V. Pascucci,
“Understanding a program’s resiliency through error propagation,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 362–373.

[13] L. Guo, D. Li, and I. Laguna, “Paris: Predicting application resilience
using machine learning,” Journal of Parallel and Distributed Computing,
vol. 152, pp. 111–124, 2021.

[14] N. Wang, M. Fertig, and S. Patel, “Y-branches: when you come to a fork
in the road, take it,” Parallel Architectures and Compilation Techniques,
2003. PACT 2003. Proceedings. 12th International Conference on, 2003.

[15] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson,
“Ipas: Intelligent protection against silent output corruption in scientific
applications,” ser. CGO 2016, 2016.

[16] N. Gershon, S. G. Eick, and S. Card, “Information visualization,”
interactions, vol. 5, no. 2, pp. 9–15, 1998.

[17] J. J. Van Wijk, “The value of visualization,” in VIS 05. IEEE Visualiza-
tion, 2005. IEEE, 2005, pp. 79–86.

[18] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of dram raw error rate on a
supercomputer,” in SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2016, pp. 645–655.

[19] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-
flip errors,” in 2017 47th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). IEEE, 2017, pp. 97–108.

[20] P. Cicotti, S. M. Mniszewski, and L. Carrington, “An evaluation of
threaded models for a classical md proxy application,” in Hardware-
Software Co-Design for High Performance Computing (Co-HPC), 2014,
Nov.

[21] PASSLAB, “Dcfg,” https://github.com/passlab/DCFG, 2016.
[22] W. R. Williams, X. Meng, B. Welton, and B. P. Miller, “Dyninst and

mrnet: Foundational infrastructure for parallel tools,” in Tools for High
Performance Computing 2015. Springer, 2016, pp. 1–16.

[23] X. Liu and J. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: Association for Computing Machinery,
2013. [Online]. Available: https://doi.org/10.1145/2503210.2503297


